
www.manaraa.com

Evolving Data Structures with Genetic ProgrammingWilliam B. LangdonComputer Science Dept.University College London,Gower Street, London, WC1E 6BT, UKEmail W.Langdon@cs.ucl.ac.ukAbstractGenetic programming (GP) is a subclass ofgenetic algorithms (GAs), in which evolvingprograms are directly represented in the chro-mosome as trees. Recently it has been shownthat programs which explicitly use directlyaddressable memory can be generated usingGP.It is established good software engineeringpractice to ensure that programs use memoryvia abstract data structures such as stacks,queues and lists. These provide an interfacebetween the program and memory, freeingthe program of memory management detailswhich are left to the data structures to im-plement. The main result presented hereinis that GP can automatically generate stacksand queues.Typically abstract data structures supportmultiple operations, such as put and get. Weshow that GP can simultaneously evolve allthe operations of a data structure by imple-menting each such operation with its own in-dependent program tree. That is, the chro-mosome consists of a �xed number of inde-pendent program trees. Moreover, crossoveronly mixes genetic material of program treesthat implement the same operation. Pro-gram trees interact with each other only viashared memory and shared \AutomaticallyDe�ned Functions" (ADFs).ADFs, \pass by reference" when callingthem, Pareto selection, \good software engi-neering practice" and partitioning the geneticpopulation into \demes" where also investi-gated whilst evolving the queue in order toimprove the GP solutions.

1 INTRODUCTIONRecent work by Teller [Tel94a] shows genetic program-ming can automatically create programs which explic-itly use memory. He has shown that inclusion of readand write primitives can make the GP language Turingcomplete, i.e. any conventional program can be writ-ten in the language [Tel94b]. However it is still anopen problem as to which subclass of programs can bee�ectively evolved.Human programmers have long recognised, that inaddition to Turing completeness, programming lan-guages should encourage programs to be structured.In particular, program production, maintenance andtesting are eased if the software is written so that itbe independent of memory access implementation de-tails. This is achieved by using abstract data struc-tures, such as stacks, queues and lists, in order to pro-vide an interface between programs and memory.We anticipate that if evolutionary computation is tosolve many di�cult problems it must adopt a struc-tured approach, particularly in its use of memory. Wedemonstrate how GP can automatically generate twoabstract data structures, stacks and queues.The GA we use is based on Koza's GP [Koz92], buteach individual within the population comprises sev-eral program trees, one for each operation (see Figures2 and 3). These trees are independent, with crossoveroccurring only between like trees. Each interacts withthe others via shared memory or shared \Automati-cally De�ned Functions" ADF [Koz94]. We show it ispossible for this GA to simultaneously evolve multipleco-operating but independent functions.In the following sections we describe our experimentswhich show that both an integer stack (Section 2) anda First-In First-Out (FIFO) integer queue (Section 3)can be evolved. Section 4 discusses the results achievedand possible further work.\Pass by reference" (Section 3.7.1) is introduced to GPin order to facilitate the evolution of primitives which

www.manaraa.com

ICGA-95 2update variables. Pareto selection (Section 3.7.2) isintroduced as it provides a natural way of comparingprograms which perform multiple operations. We use\good software engineering practice" within the �tnessfunction and syntax of the GP language to guide theGA's search (Section 3.7.3). Partitioning the geneticpopulation into \demes" appears to mitigate againstpremature convergence (Section 3.7.4).2 EVOLVING A STACK2.1 PROBLEM STATEMENTOur de�nition of a stack is given in Table 1. Whilstbased upon Aho et al [AHU87], it has been simpli�edby removing the checks for stack under
ow or over
owand \pop" returns the current top of the stack as wellas removing it. Our problem only requires the solu-tion to implement a stack of ten integers, however theprograms evolved scale up to stacks of any depth. Infact the �tness function tests only as far as depths offour items.2.2 ARCHITECTUREEach individual within the population is composed of�ve trees, each of which implements a trial solution toone of the �ve operations that form the complete stackprogram (see Figure 1). Using this architecture it ispossible to evolve all �ve operations simultaneouslyfrom randomly generated program trees......................... poppush..top..makenullemptyFigure 1: One Individual { Five Trees..CrossoverFigure 2: Crossover in One Tree at a TimeThis multiple tree architecture was chosen so that eachtree contains code which has evolved to implementa single operation. It was felt that this would easethe formation of \building blocks" of useful function-ality and enable crossover, and other genetic opera-tions, to assemble working implementations of the �veoperations from them. Consequently, complete stackprograms could be formed whilst each of its trees im-proved.

Each new individual is created either by copying all�ve trees of the parent program (10%) or via crossoverbetween two parent programs (90%). When crossingover, one type of tree is selected at random. Thetrees of the other types are copied without modi�ca-tion from the �rst parent to the o�spring. The re-maining tree is created by crossover between the treesof the chosen type in each parent in the normal GPway [Koz92]. The new tree has the same root as the�rst parent. Each mating produces a single o�spring,most of whose genetic material comes from only oneof its parents. Crossover is limited to a single treeat a time in the expectation that this will reduce theextent to which it disrupts \building blocks" of use-ful code. Crossing like trees with like trees is similarto the crossover operator used by Koza in most of hisexperiments involving ADFs [Koz94].GP creates each tree from terminals (leafs) and func-tions (branch nodes). Collectively these are calledprimitives. Initially, for simplicity, the same primi-tives were available to each tree. However \good soft-ware engineering practice" suggests a number of rulesthat might help the GP. For example, empty shouldnot have side e�ects and therefore primitives with sidee�ects (e.g. write) should not occur in empty's tree.From Section 3.6.2 onwards rules of this type are usedfor the queue problem.2.3 TERMINALS AND FUNCTIONSUSED TO EVOLVE STACKWe used primitives such as those a human programmermight use. The terminals chosen were the constants0, 1, max (10) and arg1, the variable aux and Inc Auxand Dec Aux: a) max denotes the maximum size ofthe stack, b) arg1 holds the input for push; it is zero ifused other than by push, c) aux is intended to be usedas a pointer by holding memory addresses, howeverthe GP may use it as it pleases, and d) Inc Aux andDec Aux update aux by �1 and return its new value.The functions chosen were +, �, Write Aux, read andwrite: a) Write Aux sets aux to the value of its ar-gument but returns aux's previous value, and b) readand write functions read the value in and/or updatethe value stored in one of 63 integer memory cells.They are based on Teller's [Tel94a], however accessto memory outside the range -31: : :31 aborts the pro-gram. An aborted program fails the current test and isnot tested further but keeps its current score. In somequeue experiments (Section 3.6.2 onwards) programscontinue despite memory address errors (in which caseread and write return zero) and in Section 3.7.5 only31 memory cells were used.read(a): If a valid memory index thenread := store[a];ElseAbort program;

www.manaraa.com

ICGA-95 3Table 1: Pseudo Code De�nition of the Five Stack Operationsmakenull sp := maxlength + 1; initialise stackempty empty := (sp > maxlength); is stack empty or not?top top := stack[sp]; top of the stackpop pop := stack[sp]; return top of stacksp := sp + 1; and remove itpush(x) sp := sp � 1; place x on top of stackstack[sp] := x;write(a,x): If a valid memory index thenwrite := store[a];store[a] := x;ElseAbort program;2.4 FITNESS FUNCTIONThe �tness of each individual program is the numberof tests it passes (i.e. returns the correct answer) wheneach of its constituent operations are called in a seriesof four �xed test sequences, each containing 40 calls.These were chosen to test correct operation of stackprograms, up to a depth of four. Each sequence startswith makenull, never causes stack over
ow or under-
ow and top is never called when the stack is empty.The 47 values pushed on to the stack were also �xed.They were selected at random from the range -1000and 999.The answers returned by makenull and push are ig-nored; they are tested indirectly by seeing if the otheroperations work correctly when called after them.They are both scored as if they had returned the cor-rect result. The integer value returned by empty isconverted to a boolean by treating all values > 0 astrue.All storage, i.e. the indexed memory and aux, is ini-tialized to zero before each test sequence is started.Nb. no information about the program's internal be-haviour is used.2.5 PARAMETERSThe parameters used where those those establishedby Koza [Koz94, page 655] except GP-QUICK [Sin94]uses: a steady state GA; a single o�spring percrossover. The default tournament size of 4 appears togive su�cient selection pressure, however the defaultprogram size limit was increased �ve fold, to 250, inorder to allow ready growth of all �ve trees. A popu-lation of 1,000 proved su�cient for the stack.2.6 RESULTSWith the above parameters in a group of 60 runs, fourproduced correct programs. In three the stack growsdown memory and in the other it grows up; all use

memory cell zero �rst. Whilst each program is di�er-ent, examination shows they all correctly implementa general stack, i.e. a stack of any depth rather thanjust ten (subject to the available memory). Figure 3shows the simplest correct program, its essential codeis shown within the boxes.pushwritedec auxarg1topreadwrite Auxauxpopwriteaux ADD1 inc aux.............................makenullSUBwrite Aux1 0 emptyauxFigure 3: Evolved Stack Program (1)
0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000 120000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean
Min

Best of Generation
Solutions

Figure 4: No. Trial Stacks Created v. Fitness, Meansof 60 runsOnce the runs have completed it is possible to esti-mate, using Figure 4, the probability of a stack be-ing evolve at generation i when using a population ofsize M , P (M; i). From P (M; i) the number of runsrequired to obtain at least one stack can be calcu-lated. Using the formula in [Koz92, page 194], esti-mating P (1000; 14) at 4=60 (i.e. 4 successes in 60 tri-als) and requiring the chance of not �nding any stacksto be less than 1% gives 67 runs. I.e. 67 independentruns, each running for up to 14 generations, will en-sure that the chance of producing at least one stack isbetter than 99%. This would require a total of up to14�1; 000�67 = 938; 000 trial programs to be tested.For the sake of comparison, a large number of randomprograms were generated, using the same mechanismsas the GP, and tested against the same �tness tests. A

www.manaraa.com

ICGA-95 4
0

50

100

150

200

250

0 20000 40000 60000 80000 100000 120000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Stack 1

Max
Min
Mean

Solutions

Figure 5: No. Trial Stacks Created v. Program Size,Means of 60 runstotal of 49,000,000 randomly produced programs weretested, none passed all of the tests.3 EVOLVING A QUEUEThis Section describes a series of experiments aimedat repeating the success with evolving a stack, but thistime evolving a FIFO queue. The design choices forthe queue, were based on those used with the stack.These produced initial partial solutions (Section 3.6),which were followed by design changes. Section 3.6.2shows that queues can readily be evolved if powerfulprimitives are available. Section 3.7 shows that suchprimitives need not be given but can be evolved bythe GP whilst it solves the queue problem, howeverconsiderably more trial solutions needed to be tested.3.1 PROBLEM STATEMENTOur de�nition of a queue is again based upon thatgiven by Aho et al [AHU87]. As with the stack thereare �ve operations: makenull, front, dequeue, enqueueand empty. We simplify the problem as before, sothe queue problem is very close to the stack with thereplacement of front for top, dequeue for pop and en-queue for push.As Aho et al show, implementing a queue as a circularbu�er can be done by allowing a gap between the old-est and newest items in the queue. This gap takes atleast one cell, therefore our problem restricts the num-ber of items in the queue to nine, rather than ten usedfor the stack. As we will show it is possible to evolveprograms that will scale up to any queue length. How-ever GP also evolved programs speci�c to the lengthof queue and so care had to be taken in the �tnessfunction to test the full range of queue lengths.

3.2 ARCHITECTUREThe �ve trees used with the stack were augmented by asixth: adf1, an ADF which may be called from any tree(to avoid in�nite loops, recursive calls abort the pro-gram). In later experiments (Section 3.6.2 onwards)dequeue may call front and in the �nal experiments(Section 3.7) the ADF concept was extended to allowADFs to modify their arguments by using a form ofpassing data by reference.3.3 TERMINALS AND FUNCTIONSUSED TO EVOLVE QUEUEThe details of terminals and functions are given inTables 2 and 3. They are essentially those for thestack problem except: a) two auxiliary variables, aux1and aux2, rather than one, b) Write Auxn replaced bySet Auxn, which yield the new value of auxn ratherthan its original value, and adding c) adf1 and d) mod.mod is a \protected" modulus operator: mod(a,b) =remainder of a=jbj, unless b = 0 when mod returns a.In later experiments (Section 3.6.2 onwards) we re-strict the primitives that can be used in which treesand add the two argument functions PROG2 andQROG2. a) PROG2 yields the value of its second ar-gument and b) QROG2 that of its �rst. They wereadded so that they could be used to link together sub-trees without transforming their values as other binaryfunctions do (e.g. +).3.4 FITNESS FUNCTIONThe �tness function is based upon that used with thestack. Test sequences always start with makenull,never enqueue more than nine items, and never calldequeue or front on an empty queue. All storage isinitialized to zero before each test sequence.Initially the test sequences were identical to that usedfor the stack, with the replacement of enqueue for pushand dequeue for pop. Also, only when empty returnszero, is its answer treated as true. However the GPwas unable to generalize from these limited tests andprograms evolved which passed all the tests but did notcorrectly implement a queue. As these were producedthe �tness function was changed.After the discovery of memory hungry solutions (Sec-tion 3.6) the test sequences where changed by addinga long sequence (160 tests) and to ensure the wholerange of queue lengths were tested. The �fth testsequence contains makenull only once and so ensuresmemory hungry solutions are penalized by exhaustingthe available memory.Initially the �tness function was the same as the stack,except makenull and enqueue test passes where re-duced in weight by dividing them by 20.0 before addingthem to the other scores. This was modi�ed to reward

www.manaraa.com

ICGA-95 5\good software engineering practice". Initially (Sec-tion 3.6.1) by subtracting 2.0 per memory cell above15 used. 2.0 was chosen to ensure caterpillar likeprograms which use more memory and so pass moretests actually have lower �tness. Later (Section 3.6.2onwards) the single �tness value was replaced withPareto scoring (Section 3.7.2) and excessive memoryusage was a factor in the Pareto �tness.With a uniform distribution of data values, partial so-lutions were produced which exploited the fact that thevalue zero was never enqueued. From Section 3.6.1, atangent distribution was used to bias the distributionof test data towards zero, so that it contains small val-ues, like zero, but still contains large values. With atangent distribution approximately 50% of values liein -F: : :F. The scaling factor, F, was initially 31.4,which covers the range of legal memory address, butit was progressively reduced.3.5 PARAMETERSThe parameters used are as for the stack except, thepopulation size was increased to 10,000 and the lastseries of experiments split the population into demes(3.7.4).3.6 INITIAL RESULTSA number of runs were made which yielded partialsolutions to the queue problem. One group of these areknown as \caterpillars" (Figure 6). The two auxiliaryregisters are used as pointers to the queue's head andtail and are incremented by each enqueue or dequeue.However they are not reset so the queue crawls its wayacross memory, like a caterpillar. Except for requiringinde�nite amount of memory, entirely correct solutionswere automatically evolved.aux1 qqqq... ...Head Tailaux2aux2 aux1Figure 6: Queue works up memory like a Caterpillar.Nb. data does not move.3.6.1 Shu�erIn a group of 379 runs one solution which passes all 320tests was found. This is known as the \Shu�er" (Fig-ures 7 and 8). Several more solutions of this type havebeen found in runs with slightly di�erent parametersor primitives. Many partial solutions of the shu�ertype have also been found.As Figure 7 shows, this solution correctly implementsa FIFO queue of up to nine items. Unexpectedly itdoes this by moving the contents of the memory cells.

I.e. as each item is removed from the queue, all the re-maining items are moved (or shu�ed) one place down.Thus the front of the queue is always stored in a par-ticular location. One of the auxiliary variables is usedto denote the newest item in the queue. The othervariable is used by dequeue as a temporary pointer.Figure 8 gives the impression that dequeue was builtup of code fragments, write(Inc Aux2,). This programseems to have evolved because as crossover inserted an-other write(Inc Aux2,) into dequeue, the whole pro-gram was able to process longer queues and so passmore tests. I.e. its �tness increased and so the propor-tion of write(Inc Aux2,) code fragments increased inthe population making further similar crossovers morelikely. pppp pppp pp ppp pp ppp pp pp ppp pp ppp pp ppp ppp pp ppp pp pp ppp pp ppp pp pp ppppp pp ppp pp ppp pp pp ppp pp ppp pp ppp ppp pp ppp pp pp ppp pp ppp pp pp ppp0 1 2 3 4 5 6 7 8 9 10 11 12 13frontdequeue aux10 00 00enqueueFigure 7: Execution of \Shu�er" Program3.6.2 Problem Speci�c PrimitivesTo demonstrate that it is possible to evolve thedesired circular queue a series of runs were madewhich included \modulus increment" (MIncn) termi-nals. MIncn perform the actions required to imple-ment a circular data structure. Speci�cally, add one toauxn, reduce modulo max, store the answer back intoauxn (and return it). In addition \good software en-gineering practice" was enforced by restricting whichprimitives could be used by which operation (see Table2 for details).In one set of runs, of the 11 that completed, �ve pro-duced solutions which passed all the �tness tests andcorrectly implement circular queues. I.e. with power-ful primitives the queue problem can be readily solvedby GP.Estimating the probability of a successful runP (104; 42) at 5=11 (i.e. 5 successes in 11), the numberof runs required to be assured (to within probability1%) of obtaining at least one solution is 8. This re-quires 8� 10; 000� 42 = 3; 360; 000 individuals to beprocessed.3.7 RESULTS WITHOUT MINC3.7.1 Pass by ReferenceIn order to allow a modulus increment primitive (cf.MIncn) subroutine to evolve, adf1 was changed so thatit changes the argument it is passed. E.g. if adf1 im-plements MInc and aux2 has the value 8, adf1(aux2)

www.manaraa.com

ICGA-95 6.. ..frontmodmodread1 aux20writeInc Aux2writeInc Aux2writeInc Aux2....................................writeInc Aux2writeInc Aux2writeInc Aux2writeInc Aux2writeInc Aux2..........................mod....................................writeInc Aux2writeInc Aux2writeInc Aux2writeInc Aux2writeInc Aux2writeInc Aux1arg1enqueue emptyreadaux1 Set Aux2Set Aux2arg1adf1.....................aux2 writemax arg1mod dequeuemakenullAdf1Set Aux1Adf1Set Aux1arg1 Inc Aux2modSet Aux1Set Aux2arg1Dec Aux1Adf1modFigure 8: \Shu�er" ProgramTable 2: Primitives Used by Each Operation & GP ParametersArithmetic Read only Update Initialise+, �, 0, 1, max, mod,PROG2, QROG2 aux1, aux2,aux3, read Inc Aux1, MInc1, Inc Aux2, MInc2,Inc Aux3, MInc3, Dec Aux3, write Set Aux1, Set Aux2,Set Aux3Used by all trees all but adf1 makenull, dequeue, enqueue makenullOthers Adf1 by all trees but itself Arg1 by enqueue and adf1 Front by DequeuePanmixia Pop = 10,000, G = 50, Pareto, memory penalty >15, 50% of test data within �15:7, No abortswould set aux2 to 9. In traditional programming lan-guages this is done by passing to the subroutine a ref-erence (pointer) to its argument. In our example, adf1would be passed a reference to aux2.In the following experiments pass by reference is im-plemented by making adf1 set the variable (whose ref-erence has been passed to it) to the value adf1 has cal-culated. The ADF adf1 continues to return the valueas before.3.7.2 Pareto Fitness ComparisonThere was some evidence that the �tness function fa-vored evolution of one operation (empty) above theothers. Various ways of weighting the �tness whereconsidered, but Pareto optimality [Gol89, page 197]o�ered a way of comparing programs without intro-ducing an arbitrary means of combining all their op-erations into a single �tness. Therefore it was decidedto use Pareto �tness rather than explore increasinglycomplex �tness scoring schemes.Six criterion were used: the number of tests passed byeach of the �ve operations and the number of mem-ory cells used (above 12). Pareto optimality was com-bined with tournament selection by using multiple cri-terion to select the best individual from the tourna-ment group. Where the group contains two or moreindividuals which dominate the rest of the group (arebest on all criterion) but not each other, one of themis chosen at random to be the winner.Tournaments are still used to decide which individu-als are removed from the (steady state) population.However there can now be multiple individuals withdi�erent scores which are the best or elite (on di�er-

ent criterion) and so elite individuals may be lost fromthe population as a result of a tournament with otherelite individuals. I.e. the population is not elitist.3.7.3 Good Software Engineering PracticeVarious measures to encourage evolving genetic pro-grams to follow \good software engineering practice"such as penalizing excessive memory usage and re-stricting which primitives are used where, have beensketched (see also Table 3). In the �nal experiment,the adf1 was forced to be \sensible". In particular,it could not yield a constant and it had to transformits input so that its output would not be equal to itsinput.These rules are enforced by testing the adf1 part ofeach program independently of the rest of the program.The adf1 is rejected if any value returned by adf1 isthe same as its input or all the answers returned byadf1 are the same. adf1 is tested with the values 0, 1,: : : 9 and each answer given by adf1 with these values.I.e. if adf1(9) = 10, then adf1 will be also be testedwith a value of 10.3.7.4 Demic PopulationsIn the hope of reducing premature convergence, thewhole population was treated as a 100 � 100 squaretorodial grid. Each grid point contains a single indi-vidual and is the center of a 3�3 square deme [Col92].When a new individual is created, its parent(s) are se-lected from the same deme as the individual it replaces.Tournament selection is used, as before, however thefour candidates are chosen (at random with reselec-tion) from the same deme rather than from the wholepopulation.

www.manaraa.com

ICGA-95 7Table 3: Low Level Primitives Used by Each Operation & GP ParametersArithmetic Read only Update Initialise+, �, 0, 1, max, mod,PROG2, QROG2 aux1, aux2,read write Set Aux1, Set Aux2Used by all trees all but adf1 makenull, dequeue, enqueue makenullOthers Adf1 by dequeue and enqueue Arg1 by enqueue and adf1 Front by DequeuePop = 10,000, G = 100, deme = 3� 3, Pareto, Memory penalty >12, 50% test data within �5:0, No abortsThe failure of runs without demes and without MIncnprimitives to evolve circular queues suggests that smalldemes are required. However only a limited number of�tness functions and parameters have been tried.3.7.5 Solutions ProducedIn one set of 57 runs (using the primitives given inTable 3), six produced solutions which passed all 320tests. All six solutions use adf1 to implement somekind of MInc. The adf1s evolved are complex; three ofthem reduce modulo 11 rather than 10.Subsequent analysis shows that three of the solutionsare entirely general solutions to the queue problem.I.e. will pass any legal test sequence. Further, givensuitable rede�nition of max and su�cient memory, allthree could implement an integer queue of any rea-sonable length (after they were evolved, each passed32,000 tests with queues of up to 757 items in length).Figure 9 shows how one of the correct programs im-plements a circular queue of up to nine integers, thecode is show in Figure 10.Analyzing the other three programs shows that whilstthey pass all 320 tests, they are not general, i.e. test se-quences could be devised which they would fail. Thismay be a result of reducing the range of values en-queued by too much (50% lie in -5: : :5).From the data plotted in �gure 11 we estimateP (104; 100) at 3=57 (i.e. 3 good solutions in 57 runs).As before we calculate the number of independent runsrequired to be assured (to within 1%) of obtaining atleast one good solution from P (104; 100) which yields86. 86 runs would require up to 100� 10; 000� 86 =86; 000; 000 trial programs to be tested.. p pp ppp pp pp ppp pp ppp pp pp ppp pp pppp pp pp ppp pp ppp pp pp ppp pp ppp ppp......................... p pp ppp pp pp ppp pp ppp pp pp ppp pp pppp pp pp ppp pp ppp pp pp ppp pp ppp pp p p p p p p p p p p p p p p p p p pp ppppppppppppppppppppppppppppp..........ppp ppppp p p p pp p p p pp p p p pp p p p pp p p p pp p p pp p pp p p p p pp p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p pp p pp p p p pp p p pp p p pp p p p pp p pp p pp p pp p p pp p p pp p p pp p p pp p p p pp p p p pp p pp p p p p p pp p p pp p pp p pp p p pp p pp p pp p pp p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p p pp p pp p p p pp p p pp p p pp p p p pp p p p pp p p p pp p p p pp p p ppp ppp ppTail Head -2-3-4-5-6-7-8-9-10 aux2aux2aux1aux1 -1 headdequeueenqueue front 0Figure 9: Execution of Evolved Queue Program (2)

0

50

100

150

200

250

300

200000 400000 600000 800000 1e+06

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

 Solutions

Mean
Min

Best of Generation
Solutions (general)

Solutions (not general)Figure 11: Total tests passed, Means of 57 Queue runs
0

50

100

150

200

250

200000 400000 600000 800000 1e+06

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Queue 2

Max
Min

Mean
Solutions (general)

Solutions (not general)

Figure 12: Program Size, Means of 57 Queue runs4 CONCLUSIONSThe experiments reported herein show that geneticprogramming, plus indexed (i.e. directly addressable)memory, can evolve programs which implement sim-ple abstract data structures, namely a stack and aqueue. Each data structure was implemented by �veco-operating but independent procedures. To simulta-neously evolve all the procedures, each is representedas an independent tree within the same chromosome.As anticipated, the stack proved to be easier to evolvethan the queue when each had access to problem spe-ci�c primitives, i.e. the appropriate increment and

www.manaraa.com

ICGA-95 8..........................SUB0 1... ...SUB0 SUB1 SUB0 SUB1 SUB0 Set Aux1Set Aux2SUB1 1SUB aux1QROG2max 0Adf1readaux2.. ..PROG2writeQROG20readaux2 readaux2...............................aux1SUBaux2emptyQROG2aux1 max 0PROG2Adf1enqueuereadAdf1QROG2aux1 Adf1Adf1QROG2writeaux1 arg1aux1..
makenull frontreadaux2 readreadwriteQROG2PROG2QROG20aux1 dequeuePROG2FrontPROG2QROG2max readaux2Adf1aux2 QROG2QROG2write0Adf1 adf1modmax max modmaxPROG2 arg1 arg1PROG2QROG2SUBSUBSUBmax 1arg1 SUBSUBmax 1arg1Figure 10: Evolved Queue Program (2)decrement operations. However such primitives neednot be essential. GP still evolved a circular queue (n.b.the more di�cult problem) even without the prob-lem speci�c primitives (take Modulus and Increment,MInc). It was able to do this by evolving them usingan evolvable subroutine (an ADF) which used \pass byreference" to update its argument. Not surprisingly,this required considerably more e�ort than when theprimitives were given.Pareto optimality is a natural way to judge �tnesswhen evolving multiple procedures simultaneously andcan be readily incorporated into GP using tournamentselection. However further work is required to deter-mine the best way to use it within GP.\Good software engineering practice" measures whereused to encourage the evolutionary process. In par-ticular we restricted which primitives could be usedin which tree, penalized excessive memory usage andforcing the ADF to be \sensible".In these experiments the GP showed a marked ten-dency to converge to non-optimal solutions. Thusthese problems would appear to be \GP deceptive".Partitioning the populations, using demes, was bene-�cial in this case.Having solved the stack and queue problems, we intendto study more complex data types, such as lists. Realworld problems are more readily solved using abstractdata types; we intend to investigate, using a real worldscheduling problem, how evolving abstract data typeswithin GP extends the range of problems it can solve.AcknowledgmentsW. B. Langdon is funded by the EPSRC and NationalGrid Plc. I would like to thank my supervisors (M.Levene and P. C. Treleaven), Tom Westerdale, andMauro Manela for their critisims and ideas; Andy Sin-gleton for GP-QUICK; and Adam Fraser for GPC++.

References[AHU87] A V Aho, J E Hopcroft, and J D Ullman.Data Structures and Algorithms. Addison-Wesley, 1987.[Col92] Robert J. Collins. Studies in Arti�cial Evo-lution. PhD thesis, Arti�cial Life Labo-ratory, Department of Computer Science,UCLA, 1992.[Gol89] David E. Goldberg. Genetic Algorithms inSearch Optimization and Machine Learning.Addison Wesley, 1989.[Koz92] John R. Koza. Genetic Programming: Onthe Programming of Computers by NaturalSelection. MIT press, 1992.[Koz94] John R. Koza. Genetic Programming IIAutomatic Discovery of Reusable Programs.MIT Press, Cambridge Massachusetts, May1994.[Sin94] Andy Singleton. Genetic Programming withC++. BYTE, February 1994.[Tel94a] Astro Teller. The evolution of mental mod-els. In Kenneth E. Kinnear, Jr., editor, Ad-vances in Genetic Programming, chapter 9.MIT Press, 1994.[Tel94b] Astro Teller. Turing completeness in the lan-guage of genetic programming with indexedmemory. IEEE World Congress on Compu-tational Intelligence, 1994.

